Reference Manual 00809-0100-4248, Rev DB July 2020

Rosemount[™] 248 Wireless Temperature Transmitter

ROSEMOUNT

Rosemount 248 Wireless Hardware Revision	1
HART [®] Device Revision	1
Device Install Kit/DD Revision	Device Revision 01, DD Revision 01 or greater
Device Type	2676

NOTICE

Read this manual before working with the product. For personal and system safety, and for optimum product performance, ensure you thoroughly understand the contents before installing, using, or maintaining this product.

For technical assistance, contacts are listed below:

Customer Central

Technical support, quoting, and order-related questions.

United States - 1-800-999-9307 (7:00 am to 7:00 pm CST)

Asia Pacific- 65 777 8211

Europe/Middle East/Africa - 49 (8153) 9390

North American Response Center

Equipment service needs

1-800-654-7768 (24 hours—includes Canada)

Outside of these areas, contact your local Emerson representative.

ACAUTION

The products described in this document are NOT designed for nuclear-qualified applications. Using non-nuclear qualified products in applications that require nuclear-qualified hardware or products may cause inaccurate readings.

For information on Rosemount nuclear-qualified products, contact your local Emerson Sales Representative.

WARNING

Failure to follow these installation guidelines could result in death or serious injury.

Ensure only qualified personnel perform the installation.

Explosions could result in death or serious injury.

Installation of this transmitter in an explosive environment must be in accordance with the appropriate local, national, and international standards, codes, and practices. Review the approvals section of this manual for any restrictions associated with a safe installation.

Before connecting a Field Communicator in an explosive atmosphere, ensure the instruments are installed in accordance with intrinsically safe or non-incendive field wiring practices.

Verify that the operating environment of the device is consistent with the appropriate hazardous locations certifications.

Process leaks may cause harm or result in death.

Do not remove the thermowell while in operation.

Install and tighten thermowells and sensors before applying pressure.

Electrical shock could cause death or serious injury.

Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

AWARNING

This device complies with Part 15 of the FCC Rules. Operation is subject to the following conditions:

This device may not cause harmful interference.

This device must accept any interference received, including interference that may cause undesired operation.

This device must be installed to ensure a minimum antenna separation distance of 8-in. (20 cm) from all persons.

The power module may be replaced in a hazardous area. The power module has surface resistivity greater than one gigaohm and must be properly installed in the wireless device enclosure. Care must be taken during transportation to and from the point of installation to prevent electrostatic charge build-up.

Changes or modifications not expressly approved by Rosemount can void the user's authority to operate the equipment.

This device contains licence-exempt transmitter(s)/receiver(s) that comply with Innovation, Science and Economic Development Canada's licence-exempt RSS(s).

Operation is subject to the following two conditions:

- 1. This device may not cause interference.
- 2. This device must accept any interference, including interference that may cause undesired operation of the device.

L'émetteur/récepteur exempt de licence contenu dans le présent appareil est conforme aux CNR d'Innovation, Sciences et Développement économique Canada applicables aux appareils radio exempts de licence.

L'exploitation est autorisée aux deux conditions suivantes :

- 1. L'appareil ne doit pas produire de brouillage;
- 2. L'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Physical access

Unauthorized personnel may potentially cause significant damage to and/or misconfiguration of end users' equipment. This could be intentional or unintentional and needs to be protected against.

Physical security is an important part of any security program and fundamental to protecting your system. Restrict physical access by unauthorized personnel to protect end users' assets. This is true for all systems used within the facility.

NOTICE

Before installing the wireless transmitters

The Rosemount 248 Wireless Temperature Transmitter and all other wireless devices should be installed only after the Wireless Gateway has been installed and is functioning properly. Wireless devices should also be powered up in order of proximity from the Wireless Gateway, beginning with the closest. This will result in a simpler and faster network installation.

Shipping considerations for wireless products (lithium batteries: Green Power Module, model number 701PGNKF):

The unit was shipped to you without the power module installed. Remove the power module prior to shipping.

Each Green Power Module contains one "D" size primary lithium-thionyl chloride battery. Primary lithium batteries are regulated in transportation by the U. S. Department of Transportation, and are also covered by IATA (International Air Transport Association), ICAO (International Civil Aviation Organization), and ARD (European Ground Transportation of Dangerous Goods). It is the responsibility of the shipper to ensure compliance with these or any other local requirements. Consult current regulations and requirements before shipping.

NOTICE

Power Module Considerations (Green Power Module, model number 701PGNKF):

The Green Power Module with the wireless unit contains one "D" size primary lithium-thionyl chloride battery (model number 701PGNKF). Each battery contains approximately 5.0 grams of lithium. Under normal conditions, the battery materials are self-contained and are not reactive as long as the batteries and the pack integrity are maintained. Care should be taken to prevent thermal, electrical or mechanical damage. Contacts should be protected to prevent premature discharge.

Battery hazards remain when cells are discharged.

Power modules should be stored in a clean and dry area. For maximum battery life, storage temperature should not exceed 86 $^{\circ}$ F (30 $^{\circ}$ C).

Contents

Chapter 1	Introduction	
	1.1 Using this manual	7
	1.2 Product recycling/disposal	7
Chapter 2	Configuration	9
	2.1 Overview	9
	2.2 Safety messages	9
	2.3 Sensor connections	10
	2.4 Bench top configuration	
	2.5 Device network configuration	16
	2.6 Remove power module	24
Chapter 3	Installation	25
	3.1 Safety messages	
	3.2 Wireless considerations	
	3.3 Field Communicator connections	
	3.4 Mounting	
	3.5 Physical installation	29
Chapter 4	Commissioning	
	4.1 Safety messages	
	4.2 Verify operations	
	4.3 Reference information	
Chapter 5	Operation and maintenance	41
	5.1 Safety messages	
	5.2 LCD display screen messages	
	5.3 Power module replacement	44
Chapter 6	Troubleshooting	
	6.1 Overview	
	6.2 Safety messages	
	6.3 Device status information	
	6.4 Transmitter output	51
	6.5 LCD display	
	6.6 Wireless network	
	6.7 Service support	53
Appendix A	Reference data	55
	A.1 Product Certifications	
	A.2 Ordering Information, Specifications, and Drawings	

Contents	Reference Manual
July 2020	00809-0100-4248

A		
Appendix B	Alert Wessage Wapping	

1 Introduction

1.1 Using this manual

The sections in this manual provide information on installing, operating, and maintaining the Rosemount 248 Wireless Temperature Transmitter with *Wireless*HART[®] protocol. The sections are organized as follows:

- Configuration provides instruction on commissioning and operating Rosemount 248 Wireless Transmitters. Information on software functions, configuration parameters, and online variables is also included.
- Installation contains mechanical and electrical installation instructions.
- Commissioning contains techniques for properly commissioning the device.
- Operation and maintenance contains operation and maintenance techniques.
- Troubleshooting provides troubleshooting techniques for the most common operating problems.
- Reference data supplies links to updated specifications, ordering information, intrinsic safety approval information, European ATEX directive information, and approval drawings.
- Alert Message Mapping contains important alerts in the HART[®] command 48 additional status field for the transmitter.

Rosemount 248 Wireless Transmitter features

- An installation-ready solution that provides a variety of mounting options, transmitter configurations, and sensors/thermowells
- Flexibility to meet your most demanding applications
- Wireless output with >99 percent data reliability delivers rich HART[®] data, protected by industry leading security
- The integral LCD display conveniently shows the primary sensor input and diagnostics of the transmitter.
- Simple and easy installation practices already used today for robust installations

Refer to the following literature for a full range of compatible connection heads, sensors, and thermowells provided by Emerson.

- Rosemount 214 Temperature Sensors Product Data Sheet.
- Rosemount 114 Thermowells Product Data Sheet.

1.2 Product recycling/disposal

Recycling of equipment and packaging should be taken into consideration and disposed of in accordance with local and national legislation/regulations.

2 Configuration

2.1 Overview

This section contains information on configuration and verification that should be performed prior to installation.

Field Communicator and AMS Device Manager instructions are given to perform configuration functions. For convenience, Field Communicator Fast Key sequences are labeled "Fast Keys" for each software function below the appropriate headings.

Sensor input trim example

Fast Key sequence	1, 2, 3, etc.
-------------------	---------------

2.2 Safety messages

Instructions and procedures in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that potentially raises safety issues is indicated by a warning symbol (\triangle). Refer to the following safety messages before performing an operation preceded by this symbol.

A WARNING

Failure to follow these installation guidelines could result in death or serious injury.

Ensure only qualified personnel perform the installation.

Explosions could result in death or serious injury.

Before connecting a Field Communicator in an explosive atmosphere, ensure the instruments are installed in accordance with intrinsically safe or non-incendive field wiring practices.

Verify that the operating environment of the device is consistent with the appropriate hazardous locations certifications.

Process leaks may cause harm or result in death.

Do not remove the thermowell while in operation.

Install and tighten thermowells and sensors before applying pressure.

Electrical shock could cause death or serious injury.

Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

A WARNING

This device complies with Part 15 of the FCC Rules. Operation is subject to the following conditions:

This device may not cause harmful interference.

This device must accept any interference received, including interference that may cause undesired operation.

This device must be installed to ensure a minimum antenna separation distance of 8-in. (20 cm) from all persons.

The power module may be replaced in a hazardous area. The power module has surface resistivity greater than one gigaohm and must be properly installed in the wireless device enclosure. Care must be taken during transportation to and from the point of installation to prevent electrostatic charge build-up.

2.3 Sensor connections

The Rosemount 248 Wireless Transmitter is compatible with a number of RTD and thermocouple sensor types. Figure 2-1 shows the correct input connections to the sensor terminals on the transmitter. To ensure a proper sensor connection, anchor the sensor lead wires into the appropriate compression terminals and tighten the screws.

Thermocouple or Millivolts inputs

The thermocouple can be connected directly to the transmitter. Use appropriate thermocouple extension wire if mounting the transmitter remotely from the sensor.

RTD or Ohm inputs

The transmitters will accept a variety of RTD or ohmic configurations, including 2-, 3- or 4-wire connections. If the transmitter is mounted remotely from a 3- or 4-wire RTD, it will operate within specifications, without recalibration, for lead wire resistances of up to 5 ohms per lead (equivalent to 500 feet of 20 AWG wire). In this case, the leads between the RTD and transmitter should be shielded. If using a 2-wire connection, both RTD leads are in series with the sensor element, so significant errors can occur if the lead lengths exceed three feet of 20 AWG wire (approximately 0.05 °C/ft.). For longer runs, attach a third or fourth lead to achieve a 3- or 4-wire connection as described above.

Effect-RTD input

Since the lead wires are part of the RTD circuit, the lead wire resistance needs to be compensated for to achieve the best accuracy. This becomes especially critical in applications where long sensor and/or lead wires are used. There are three lead wire configurations commonly available. In a two-wire configuration there can be no compensation for lead wire resistance since the lead wires are in series with the element and appear to the transmitter as part of the sensor's resistance causing inherent accuracy degradation. In a 3-wire configuration, compensation is accomplished using the third wire with the assumption that it will be the same resistance as the other two wires and the same compensation is applied to all three wires. A 4-wire design is ideal because the lead wire resistance is inconsequential to the measurement. It uses a measurement technique where a very small constant current of about 150 micro amps is applied to the sensor

through two leads and the voltage developed across the sensor is measured over the other two wires with a high-impedance and high resolution measuring circuit. In accordance with Ohm's Law, the high impedance virtually eliminates any current flow in the voltage measurement leads and therefore the resistance of the leads is not a factor.

Table 2-1: Examples of Approximate Basic Error

Sensor input	Approximate basic error
4-wire RTD	Negligible ⁽¹⁾
3-wire RTD	Error in reading is equivalent to unbalanced lead wire resistance ⁽²⁾
2-wire RTD	Error in reading is equivalent to total lead wire resistance

(1) Independent of lead wire resistance up to 5 Ω per lead.

(2) Unbalanced lead wire resistance is the maximum resistance differences between any two leads.

Figure 2-1: Sensor Wiring

Figure 2-2: Sensor Connections

Note

Emerson provides 4-wire sensors for all single element RTDs. Use these RTDs in 3- or 2wire configurations by leaving the unneeded leads disconnected and insulated with electrical tape.

Note

To configure a single element, 4-wire RTD as a 3-wire system, connect only one white lead. Insulate or terminate the unused white lead in a manner that prevents shorting to the ground. To configure a single element, 4-wire RTD as a 2-wire system, connect matching colored wires first and then connect the paired wires to the terminal.

Figure 2-4: Thermocouple Lead Wire Configurations

IEC 60584 thermocouple c		IEC 60584 thermocouple colors		ASTM E- 230 thermocouple colors	
туре	POS (+)	NEG (-)	POS (+)	NEG (-)	
J	Black	White	White	Red	
К	Green	White	Yellow	Red	
Т	Brown	White	Blue	Red	

Note

Dual thermocouple sensors are shipped with one pair of the wires shrink wrapped together.

2.3.1 Sensor leads

 \triangle If the sensor is installed in a high-voltage environment and a fault condition or installation error occurs, the sensor leads and transmitter terminals could carry lethal voltages. Use extreme caution when making contact with the leads and terminals.

Use the following steps to wire the sensor and supply power to the transmitter:

Procedure

- 1. Remove the power module cover (if applicable).
- 2. Remove the transmitter enclosure cover (if applicable).
- 3. Remove the LCD display (if applicable).
- 4. Loosen the captive screws and remove LCD adapter plate (if applicable).
- 5. Attach the sensor leads according to Figure 2-1.
- 6. Reattach and secure LCD adapter plate to 5 in-lbs of torque (if applicable).

- 7. Reattach the LCD display (if applicable).
- 8. Connect the Green Power Module.
- 9. Verify the connection by observing the LCD display (if applicable).
- 10. Reattach and tighten the covers (if applicable).
- 11. Always ensure a proper seal by installing the covers so that polymer contacts polymer (i.e. no O-ring visible). Use Rosemount O-rings.

2.4 Bench top configuration

Bench top configuration consists of testing the transmitter and verifying transmitter configuration data. The wireless temperature transmitters must be configured before installation, which may be performed either directly or remotely. Direct configuration can be performed using a Field Communicator, AMS Device Manager, AMS Wireless Configurator, or any *Wireless*HART[®] Communicator. Remote configuration can be performed using AMS Device Manager, AMS Wireless Configurator, or the Wireless Gateway.

When using a Field Communicator, any configuration changes made must be sent to the transmitter by using the **Send** key (F2). AMS configuration changes are implemented when the **Apply** button is clicked.

The power module must be installed to provide power to the Rosemount 248 Wireless for configuration. To communicate to the transmitter, begin by removing the power module cover. This will expose the HART[®] communication terminals located on the Green Power Module. Next, connect the Field Communicator leads to the COMM port connections on the Green Power Module.

Field Communicator

If performing device configuration directly, connect the bench equipment and turn on the Field Communicator by pressing the **ON/OFF** key. When using a Field Communicator, any configuration changes must be sent to the transmitter by using the **Send** key (**F2**).

The Field Communicator will search for a HART[®]-compatible device and indicate when the connection is made. If the Field Communicator fails to connect, it will indicate that no device was found. If this occurs, refer to Troubleshooting.

AMS Device Manager and AMS Wireless Configurator

When configuring the Rosemount 248 Wireless using AMS Device Manager or AMS Wireless Configurator, double click the **Rosemount 248 Wireless device** icon (or right click and select **Con/Setup**), then select the **Configure Menu**. AMS configuration changes are implemented when the **Apply** button is clicked.

During direct connection configuration, AMS Device Manager will search for a HARTcompatible device and indicate when the connection is made. If AMS Device Manager fails to connect, it indicates that no device was found. If this occurs, refer to Troubleshooting.

Emerson Wireless Gateway

The Rosemount 248 Wireless Transmitter supports limited remote configuration through the Wireless Gateway. The Gateway allows configuration of the following device parameters: HART Tag, Short Tag, Descriptor, Engineering Units, Update Rate and Range Values.

Device sensor configuration

Every temperature sensor has unique characteristics. In order to ensure the most accurate measurement, the transmitter should be configured to match the specific sensor that it will be connected to. Prior to installation, verify the configuration and connection settings of the temperature sensor through a Field Communicator or AMS.

Default settings

The Rosemount 248 Wireless default configuration is shown below:

Sensor Type	Pt 100 (α = 0.00385)
Engineering Units	°C
Number of Lead Wires	4
Network ID	Factory generated network parameters
Join Key	Factory generated network parameters
Update Rate	1 minute

Note

The C1 option code can be used to enable factory configuration of the Update Rate, Date, Descriptor and Message fields. This code is not required to have the factory configure the Sensor Type, Connection or the Self Organizing Network parameters.

2.5 Device network configuration

2.5.1 Join to network

Fast Keys	2, 1, 2
-----------	---------

In order to communicate with the Wireless Gateway, and ultimately the Host System, the transmitter must be configured to communicate over the wireless network. This step is the wireless equivalent of connecting wires from a transmitter to the host system.

Procedure

- 1. From the *Home* screen, select 2: Configure.
- 2. Select 1: Guided Setup.
- 3. Select 2: Join to Network.

Using a Field Communicator or AMS Device Manager to communicate with the transmitter, enter the Network ID and Join Key so they match the Network ID and Join Key of the Wireless Gateway and the other devices in the network. If the Network ID and Join Key are not identical to those set in the Gateway, the transmitter will not communicate with the network. The Network ID and Join Key may be obtained from the Wireless Gateway on the **Setup** \rightarrow **Network** \rightarrow **Settings** page on the web server.

2.5.2 Configure update rate

Fast Keys	2, 1, 3
-----------	---------

The Update Rate is the frequency at which a new measurement is taken and transmitted over the wireless network. This by default is 1 minute. This may be changed at commissioning, or at any time via AMS Device Manager. The update rate is user selectable from 1 second to 60 minutes.

Procedure

- 1. From the Home screen, select 2: Configure.
- 2. Select 1: Guided Setup.
- 3. Select 3: Configure Update Rate.

When the device configuration is completed, remove the power module and replace the module cover. The power module should be inserted only when the device is ready to be commissioned. Use caution when handling the power module.

2.5.3 HART[®] menu tree

Figure 2-7: Overview

2.5.4 Fast Key sequence

Fast Key sequence lists the Fast Key sequences for common transmitter functions.

Note

The Fast Key sequences assume that Device Revision 01, DD Revision 01 or greater is being used.

Function	Key sequence	Menu items
Device Information	1,7	Identification, Revisions, Radio, Security
PV Range Values	2, 2, 3	PV LRV, PV URV, LSL, USL
Lower Range Value	2, 2, 2, 6, 3, 2	Set the temperature for the 0% point to configure the Percent of Range
Upper Range Value	2, 2, 2, 6, 3, 1	Set the temperature for the 100% point to configure the Percent of Range
Sensor Trim (Calibration)	2, 1, 4	Lower Sensor Trim, and Upper Sensor Trim
Wireless Network	2, 1, 2	N/A
Sensor Configuration	2, 1, 1	Configure Sensor Type and Units, View Current Sensor Configuration

Table 2-2: Fast Key Sequence

2.5.5 Calibration

Calibrating the transmitter increases the measurement precision by allowing corrections to be made to the factory-stored characterization curve by digitally altering the transmitter's interpretation of the sensor input.

To understand calibration, it is necessary to understand that smart transmitters operate differently from analog transmitters. An important difference is that smart transmitters are factory-characterized, meaning that they are shipped with a standard sensor curve stored in the transmitter firmware. In operation, the transmitter uses this information to produce a process variable output, in engineering units, dependent on the sensor input.

Calibration of the transmitter may include the following procedure:

• Sensor Input Trim: Digitally alter the transmitter's interpretation of the input signal

Trim the transmitter

The Sensor Input Trim function may be used when calibrating.

Sensor calibration

Fast Keys	3, 5, 2
-----------	---------

Perform a sensor trim if the transmitters digital value for the primary variable does not match the plant's standard calibration equipment. The sensor trim function calibrates the sensor to the transmitter in temperature units or raw units. Unless your site-standard input source is NIST-traceable, the trim functions will not maintain the NIST-traceability of the system.

The Sensor Input Trim command allows the transmitter's interpretation of the input signal to be digitally altered. The sensor reference command trims, in engineering(°F, °C, °R, K) or raw (Ω , mV) units, the combined sensor and transmitter system to a site standard using a known temperature source. Sensor trimming is suitable for validation procedures or for applications that require calibrating the sensor and transmitter together.

Use the following procedure to perform a sensor trim with a transmitter:

Procedure

- 1. Connect the calibration device or sensor to the transmitter. Refer to Figure 2-1 or on the device terminal block for sensor wiring diagrams.
- 2. Connect the communicator to the transmitter.
- 3. From the *Home* screen, select **Service Tools** → **Maintenance** → **Calibration** to prepare to trim the sensor.
- 4. Select 6 Lower Sensor Trim or 7 Upper Sensor Trim.

Note

It is recommended to perform lower offset trims first, before performing upper slope trims.

- 5. Answer the question about configuring device for steady state sensor drive.
- 6. Select the appropriate sensor trim units at the prompt.
- 7. Adjust the calibration device to the desired trim value (must be within the selected sensor limits). If a combined sensor and transmitter system are being trimmed, expose the sensor to a known temperature and allow the temperature reading to stabilize. Use a bath, furnace or isothermal block, measured with a site-standard thermometer, as the known temperature source.
- 8. Select **OK** once the temperature stabilizes. The communicator displays the output value the transmitter associates with the input value provided by the calibration device.
- 9. Accept new calibration.

AMS Device Manager

For AMS Device Manager, configure the sensor as indicated above.

Procedure

- 1. From the Overview screen, select the Calibrate button.
- 2. Select **Lower Input Trim** or **Upper Limit Trim**. The wizard will continue through the process.
- 3. To restore the transmitter to factory default, select Service Tools → Maintenance → Sensor Calibration → Recall Factory Trim. The wizard will revert the transmitter to the factory trim for a given sensor.
- 4. Apply changes.

2.5.6 Configuring the LCD display

The LCD display configuration command allows customization of the LCD display to suit application requirements. The LCD display will alternate between the selected items.

- Temperature Units
- Sensor Temperature
- % of Range
- Supply Voltage

Reference LCD display screen messages for images of LCD display screens.

Enabling and configuring LCD display with a Field Communicator

From the Home screen, enter the Fast Key sequence

Fast Keys 2, 1, 5

Transmitter ordered with the LCD display will be shipped with the display enabled and installed.

If the transmitter was ordered without the LCD display (and the LCD display was ordered as a spare part) or if the LCD display was disabled, follow these steps to enable the LCD display on the transmitter.

Procedure

- 1. From the *Home* screen, select **2: Configure**.
- 2. Select 1: Guided Setup.
- 3. Select 5: Configure Device Display.
- 4. Select the option Periodic.
- 5. Select desired display options and click Enter.

Configuring LCD display with AMS Device Manager

Procedure

- 1. Right click on the device and select **Configure**.
- 2. Click on **Configure Device Display** button under **Optional Setup**.
- 3. Select desired display options and click Enter.

2.5.7 Alerts

Fast Keys	2,3

Alerts allow the user to configure the transmitter to output a HART[®] message when the configured data point is exceeded. A process alert will be transmitter continuously if the set points are exceeded and the alert mode is ON. An alert will be displayed on a Field Communicator, AMS Device Manager status screen or in the error section of the LCD display. The alert will reset once the value returns within range.

Note

HI alert value must be higher than the LO alert value. Both alert values must be within the temperature sensor limits.

Figure 2-10: Rising Alert

Figure 2-11: Falling Alert

Field Communicator

To configure the process alerts with a Field Communicator, perform the following procedure:

Procedure

- 1. From the *HOME* screen, follow the Fast Key sequence, **2** Configure, **3** Alert Setup.
- 2. Select 1 for HI-HI Alarm, or
- 3. Select **2** for HI Alarm, or
- 4. Select **3** for LO Alarm, or
- 5. Select **4** for LO-LO Alarm.
- 6. Select **1** to configure the alert.

2.6 Remove power module

After the sensor and network have been configured, remove the Power Module and replace the module cover. The power module should be inserted only when the device is ready to be commissioned. Use caution when handling the power module. The Power Module may be damaged if dropped from heights in excess of 20 feet.

3 Installation

3.1 Safety messages

Instructions and procedures in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that potentially raises safety issues is indicated by a warning symbol (\triangle). Refer to the following safety messages before performing an operation preceded by this symbol.

A WARNING

Failure to follow these installation guidelines could result in death or serious injury.

Ensure only qualified personnel perform the installation.

Explosions could result in death or serious injury.

Installation of this transmitter in an explosive environment must be in accordance with the appropriate local, national, and international standards, codes, and practices. Review the approvals section of this manual for any restrictions associated with a safe installation.

Before connecting a Field Communicator in an explosive atmosphere, ensure the instruments are installed in accordance with intrinsically safe or non-incendive field wiring practices.

Verify that the operating environment of the device is consistent with the appropriate hazardous locations certifications.

Process leaks may cause harm or result in death.

Do not remove the thermowell while in operation.

Install and tighten thermowells and sensors before applying pressure.

Electrical shock could cause death or serious injury.

Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following conditions:

This device may not cause harmful interference.

This device must accept any interference received, including interference that may cause undesired operation.

This device must be installed to ensure a minimum antenna separation distance of 8-in. (20 cm) from all persons.

The power module may be replaced in a hazardous area. The power module has surface resistivity greater than one gigaohm and must be properly installed in the wireless device enclosure. Care must be taken during transportation to and from the point of installation to prevent electrostatic charge build-up.

3.2 Wireless considerations

3.2.1 Power up sequence

The Rosemount 248 Wireless Transmitter and all other devices should be installed only after the Wireless Gateway ("Gateway") has been installed and is functioning properly. Wireless devices should also be powered up in order of proximity from the Gateway, beginning with the closest. This will result in a simpler and faster network installation. Enable **Active Advertising** on the Gateway to ensure new devices join the network faster. For more information see the Emerson Wireless Gateway Reference Manual.

3.2.2 Antenna position

The internal antenna is designed for multiple mounting orientations. The transmitter should be mounted according to best practices for your temperature measurement application. The transmitter should be approximately 3 ft. (1 m) from any large structure or building to allow clear communication to other devices.

3.2.3 Network design best practices

When mounting the device, recommended practices should be considered to achieve the best wireless performance. See Mounting for more information on recommended practices.

3.3 Field Communicator connections

The power module must be installed in the device for the Field Communicator to interface with the transmitter. The Field Communicator connections are located on the Green Power Module. To communicate to the transmitter, begin by removing the power module cover. This will expose the HART[®] communication terminals located on the Green Power Module. Next, connect the Field Communicator leads to the COMM port connections on the Green Power Module.

This transmitter uses the Green Power Module; order model number 701PGNKF. The power module is keyed and can only be inserted in one orientation. Field communication with this device requires a HART-based Field Communicator. Refer to Figure 3-1 for instructions on connecting the Field Communicator to the transmitter.

Figure 3-1: Field Communicator Connection

3.3.1 Mechanical

Location

When choosing an installation location and position, take into account the need for access to the mesh network, access to the transmitter and to the power module compartment for ease of power module replacement.

Electronics cover

The electronics cover is tightened so that polymer contacts polymer. When removing the electronics cover, ensure that there is no damage done to the O-ring. If damaged replace with a Rosemount O-ring before reattaching cover, ensuring polymer contacts polymer (i.e. no O-ring visible).

3.3.2 Electrical

Power module

The transmitter is self-powered. The power module contains a primary lithium-thionyl chloride battery (Green Power Module, model number 701PGNKF). Each battery contains approximately 5 grams of lithium. Under normal conditions, the battery materials are self-contained and are not reactive as long as the battery and the power module are maintained. Care should be taken to prevent thermal, electrical, or mechanical damage. Contacts should be protected to prevent premature discharge.

 \triangle Use caution when handling the power module, it may be damaged if dropped from heights in excess of 20 feet.

Battery hazards remain when cells are discharged.

Power modules should be stored in a clean and dry area. For maximum power module life, storage temperature should not exceed 30 °C.

Sensor

Make sensor connections with the threaded 1½-in. NPT connection sensor adapter.

3.3.3 Environmental

Verify that the operating atmosphere of the transmitter is consistent with the appropriate hazardous locations certifications.

Temperature effects

The transmitter will operate within specifications for ambient temperatures between -40 and 185 °F (-40 and 85 °C). Heat from the process is transferred from the thermowell to the transmitter housing. If the expected process temperature is near or beyond specification limits, consider the use of additional thermowell and extension, or remote mounting the transmitter to thermally isolate it from the process. See Mounting for process temperature derating.

3.4 Mounting

The transmitter can be installed in one of two configurations: Direct Mount, where the sensor is connected directly to the transmitter housing's conduit entry, or Remote Mount, where the sensor is mounted separate from the transmitter housing, then connected to the transmitter via conduit. Select the installation sequence that corresponds to the mounting configuration.

Figure 3-2 provides an example of the relationship between transmitter housing temperature rise and extension length.

Figure 3-2: Temperature Rise vs. Extension Length

Example

The transmitter specification limit is 85 °C. If the ambient temperature is 55 °C and the max process temperature to be measured is 815 °C, the maximum permissible temperature rise is the transmitter specification limit minus the ambient temperature (moves 85 to 55 °C), or 30 °C.

In this case, an extension of 5-in. meets this requirement, but 6-in. provides an additional margin of thermowells protection, thereby reducing risk of ambient thermal damage.

Temperature limits

	Operating limit	Storage limit
With LCD display	–4 to 185 °F	–40 to 185 °F
	–20 to 85 °C	–40 to 85 °C
Without LCD display	–40 to 185 °F	–40 to 185 °F
	–40 to 85 °C	–40 to 85 °C

3.5 Physical installation

The transmitter can be installed in one of two configurations: Direct Mount, where the sensor is connected directly to the transmitter conduit entry, or Remote Mount, where the sensor is mounted separately from the transmitter housing, then connected to the transmitter via conduit. Choose the installation sequence that corresponds to the mounting configuration.

Upon installation of the transmitter, ensure that the conduit entry has an installed conduit fitting or cable gland with approved thread sealant.

3.5.1 Direct mount

The direct mount installation should not be used when installing with a Swagelok[®] fitting.

Procedure

- 1. Remove the transmitter enclosure cover.
- 2. Remove the LCD display (if applicable).
- 3. Loosen the captive screws and remove LCD display adapter plate (if applicable).

Figure 3-3: Exploded View of LCD Display Assembly

- 4. Attach the sensor to the transmitter housing using the threaded conduit entry. Be sure to use an approved thread sealant on all connections.
- 5. Attach the sensor wiring to the terminals as indicated on Figure 2-1.
- 6. Reattach and secure LCD display adapter plate to 5 in-lb of torque (if applicable).
- 7. Reattach the LCD display (if applicable).
- 8. Reattach and tighten the transmitter enclosure cover.
- 9. Remove the power module cover.

- 10. Connect the Green Power Module.
- 11. Reattach and tighten the power module cover.
- 12. Always ensure a proper seal by installing the electronics housing cover(s) so that polymer contacts polymer (i.e. no O-ring visible). Use Rosemount O-rings.
- 13. Provide 1.75-in. (45 mm) of clearance for units without an LCD display. Provide 3-in. (76 mm) of clearance for units with an LCD display for cover removal.

Figure 3-4: Direct Mount

Dimensions are in inches (millimeters).

Note

Wireless devices should be powered up in order of proximity from the Gateway, beginning with the closest device to the Gateway. This will result in a simpler and faster network installation.

3.5.2 Remote mount

Procedure

- 1. Remove the transmitter enclosure cover.
- 2. Remove the LCD display (if applicable).
- 3. Loosen the captive screws and remove LCD display adapter plate (if applicable). Refer to Figure 3-5.

Figure 3-5: Exploded View of LCD Display Assembly

4. Run wiring (and conduit, if necessary) from the sensor to the transmitter.

Note

Use an ½-in. NPT when mating conduit to the transmitter.

- 5. Pull the wiring through the threaded conduit entry of the transmitter.
- 6. Attach the sensor wiring to the terminals as indicated on Figure 2-1.
- 7. Reattach and secure LCD display adapter plate to 5 in-lb of torque (if applicable).
- 8. Reattach the LCD display (if applicable).
- 9. Reattach and tighten the transmitter enclosure cover.
- 10. Remove the power module cover.
- 11. Connect the Green Power Module.
- 12. Reattach and tighten the power module cover.
- 13. Always ensure a proper seal by installing the electronics housing cover(s) so that polymer contacts polymer (i.e. no O-ring visible). Use Rosemount O-rings.
- 14. Provide 1.75-in. (45 mm) of clearance for units without an LCD display. Provide 3-in. (76 mm) of clearance for units with an LCD display for cover removal.

Figure 3-6: Remote Mount

Dimensions are in inches (millimeters).

Note

Wireless devices should be powered up in order of proximity from the Wireless Gateway, beginning with the closest device to the Gateway. This will result in a simpler and faster network installation.

3.5.3 LCD display

Transmitters ordered with the LCD display will be shipped with the display installed.

The optional LCD display can be rotated in 90-degree increments by squeezing the two tabs, pulling out, rotating and snapping back into place.

Use the following procedure and Figure 3-7 to install the LCD display:

Procedure

- 1. Remove the power module cover and Green Power Module
- 2. Remove the transmitter enclosure cover. Do not remove the instrument covers in explosive environments when the circuit is live.
- 3. Tighten the captive screws and secure LCD adapter plate to 5 in-lb of torque.
- 4. Attach the LCD display on the LCD adapter plate, rotate to the desired position and snap into place.
- 5. Reattach and tighten the transmitter enclosure cover.
- 6. Connect the Green Power Module.
- 7. Reattach and tighten the power module cover.
- 8. Always ensure a proper seal by installing the covers so that polymer contacts polymer (i.e. no O-ring visible). Use Rosemount O-rings.

To enable and configure the LCD display, refer to Configuring the LCD display.

Note the following LCD display temperature limits:

Operating: -40 to 185 °F (-40 to 85 °C)

Storage: -40 to 185 °F (-40 to 85 °C)

Note

Only use Rosemount wireless LCD display part number: 00753-3203-0001.

Note

An LCD display from a wired device will not function in a wireless device.

Figure 3-7: Optional LCD Display

4 Commissioning

4.1 Safety messages

Instructions and procedures in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that potentially raises safety issues is indicated by a warning symbol (\triangle). Refer to the following safety messages before performing an operation preceded by this symbol.

AWARNING

Failure to follow these installation guidelines could result in death or serious injury.

Ensure only qualified personnel perform the installation.

Explosions could result in death or serious injury.

Installation of this transmitter in an explosive environment must be in accordance with the appropriate local, national, and international standards, codes, and practices. Review the approvals section of this manual for any restrictions associated with a safe installation.

Before connecting a Field Communicator in an explosive atmosphere, ensure the instruments are installed in accordance with intrinsically safe or non-incendive field wiring practices.

Verify that the operating environment of the device is consistent with the appropriate hazardous locations certifications.

Process leaks may cause harm or result in death.

Do not remove the thermowell while in operation.

Install and tighten thermowells and sensors before applying pressure.

Electrical shock could cause death or serious injury.

Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following conditions:

This device may not cause harmful interference.

This device must accept any interference received, including interference that may cause undesired operation.

This device must be installed to ensure a minimum antenna separation distance of 8-in. (20 cm) from all persons.

The power module may be replaced in a hazardous area. The power module has surface resistivity greater than one gigaohm and must be properly installed in the wireless device enclosure. Care must be taken during transportation to and from the point of installation to prevent electrostatic charge build-up.

Note

The Rosemount 248 Wireless and all other wireless devices should be installed only after the Wireless Gateway has been installed and is functioning properly.Wireless devices should also be powered up in order of proximity from the Wireless Gateway, beginning with the closest device to the Gateway. This will result in a simpler and faster network installation.

4.2 Verify operations

Operations can be verified in four locations:

- at the device via the Local Display
- using the Field Communicator
- at the Gateway's integrated web interface
- using AMS Wireless Configurator or AMS Device Manager

4.2.1 Local display

During normal operation, the LCD display will display the PV value at the configured update rate.

For Device Status screens, see LCD display screen messages.

4.2.2 Field Communicator

For HART[®] communication, a Rosemount 248 Wireless DD is required. To obtain the latest DD, visit the Emerson Easy Upgrade site at:

Emerson.com/Rosemount/Device-Install-Kits

The communication status may be verified in the wireless device using the following Fast Key sequence.

Table 4-1: Fast Key Sequence

Function	Key sequence	Menu items
Communications	3, 4	Comm Status, Join Mode, Available Neighbors, Advertisement, Join Attempts

4.2.3 Emerson Wireless Gateway

In the integrated web interface from the Gateway, navigate to the **Explorer** \rightarrow **Status** page. This page shows whether the device has joined the network and if it is communicating properly.

Note

It may take several minutes for the device to join the network. If the device joins the network and immediately has an alarm present, it is likely due to sensor configuration. Check the sensor wiring (see Figure 4-3) and configuration table (Table 4-2).

	Version: 4.5.27						
•	Home	e Devices System Se	ttings			+ Network	Information
stem Settings >> Ne	twork >> Network Setting	5					
		Network Setting	s				
		Network name					
		myNet	1				
	List		1				
	2	Network ID					
		33333]				
		Join Key					
			•••••	•••••			
		Show join key					
		Rotate network key?	?				
		0 Yes					
		* No					
		Change network key	y now?				
		0 Yes					
		* NO					
		Security mode					
		Common join key	Access control list				
		Active Advertising					
		⊕ Yes ○ No					
			Cance				
				_	_	_	

Figure 4-1: Wireless Gateway Network Settings

4.2.4 AMS Wireless Configurator

When the device has joined the network, it will appear in the *Wireless Configurator* window as illustrated in figure below. For HART[®] communication, a Rosemount 248 Wireless DD is required. To obtain the latest DD, visit the Emerson Easy Upgrade site at:

Emerson.com/Rosemount/Device-Install-Kits

Figure 4-2: AMS Wireless Configurator

🖁 AMS Suite: Intelligent Device Manager - [Device Explorer]							
File Edit View Tools Window Help	َ File Edit View Tools Window Help						
<u>sr 196 198 (</u>							
Current Device							
🖃 📲 AMS Device Manager	Tag	Manufacturer	Device Type	Device Rev	Protocol	Protocol Rev	
Plant Locations	3 09/25/2014 13:39:29.593	Rosemount	248 Polymer	1	HART	7	
E Calibration							
Device List							
Gateway Network							
Smart Wireless Gateway							
And myNet							
Ready					User:admin	/	

4.3 Reference information

Figure 4-3: Sensor Wiring

Figure 4-4: Sensor Connections

Note

Emerson provides 4-wire sensors for all single element RTDs. Use these RTDs in 3- or 2wire configurations by leaving the unneeded leads disconnected and insulated with electrical tape.

Table 4-2: WirelessHART®	Fast Key Sequences
--------------------------	--------------------

Function	Key sequence	Menu items
Device Information	1,7	Identification, Revisions, Radio, Security
Guided Setup	2, 1	Join Device to Network, Configure Update Rate, Configure Sensor, Calibrate Sensor
Manual Setup	2, 2	Wireless, Process Sensor, Percent of Range, Device Temperatures, Device Information, Other
Wireless Configuration	2, 2, 1	Network ID, Join to Network, Broadcast Info
Sensor Calibration	3, 5, 2	Sensor Value, Sensor Status, Current Lower Trim, Current Upper Trim, Lower Sensor Trim, Upper Sensor Trim, Recall Factory Trim

Figure 4-5: RTD Lead Wire Configuration per IEC 60751

Note

To configure a single element, 4-wire RTD as a 3-wire system, connect only one white lead. Insulate or terminate the unused white lead in a manner that prevents shorting to the ground.

To configure a single element, 4-wire RTD as a 2-wire system, connect matching colored wires first and then connect the paired wires to the terminal.

Figure 4-6: Thermocouple Lead Wire Configurations

	IEC 60584 thermocouple colors		ASTM E-230 thermocouple colors		
Туре	POS(+)	NEG(-)	POS(+)	NEG(-)	
J	Black	White	White	Red	
К	Green	White	Yellow	Red	
Т	Brown	White	Blue	Red	

Note

Dual thermocouple sensors are shipped with one pair of the wires shrink wrapped together.

5 Operation and maintenance

5.1 Safety messages

Instructions and procedures in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that potentially raises safety issues is indicated by a warning symbol (\triangle). Refer to the following safety messages before performing an operation preceded by this symbol.

A WARNING

Failure to follow these installation guidelines could result in death or serious injury.

Ensure only qualified personnel perform the installation.

Explosions could result in death or serious injury.

Installation of this transmitter in an explosive environment must be in accordance with the appropriate local, national, and international standards, codes, and practices. Review the approvals section of this manual for any restrictions associated with a safe installation.

Before connecting a Field Communicator in an explosive atmosphere, ensure the instruments are installed in accordance with intrinsically safe or non-incendive field wiring practices.

Verify that the operating environment of the device is consistent with the appropriate hazardous locations certifications.

Process leaks may cause harm or result in death.

Do not remove the thermowell while in operation.

Install and tighten thermowells and sensors before applying pressure.

Electrical shock could cause death or serious injury.

Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following conditions:

This device may not cause harmful interference.

This device must accept any interference received, including interference that may cause undesired operation.

This device must be installed to ensure a minimum antenna separation distance of 8-in. (20 cm) from all persons.

The power module may be replaced in a hazardous area. The power module has surface resistivity greater than one gigaohm and must be properly installed in the wireless device enclosure. Care must be taken during transportation to and from the point of installation to prevent electrostatic charge build-up.

5.2 LCD display screen messages

5.2.1 Startup screen sequence

The following screens will display when the power module is first connected to the transmitter.

Note

Use the Rosemount Wireless LCD Part Number: 00753-3203-0001.

5.3 **Power module replacement**

Expected power module life is 10 years at reference conditions.⁽¹⁾

When power module replacement is required, remove the cover and remove the Green Power Module. Replace the Green Power Module (part number 701PGNKF) and replace the cover. Tighten to specification and verify operation.

Figure 5-1: Exploded Power Module View

5.3.1 Handling considerations

The Green Power Module with the wireless unit contains one "D" size primary lithiumthionyl chloride battery (Green Power Module, model number 701PGNKF). Each battery contains approximately 5.0 grams of lithium. Under normal conditions, the battery materials are self-contained and are not reactive as long as the batteries and the pack integrity are maintained. Care should be taken to prevent thermal, electrical or mechanical damage.

Contacts should be protected to prevent premature discharge.

⁽¹⁾ Reference conditions are 70° F (21° C), transmit rate of once per minute, and routing data for three additional network devices.

Note

Power modules should be stored in a clean and dry area. For maximum power module life, storage temperature should not exceed 86 °F (30 °C).

ACAUTION

Use caution when handling the power module, it may be damaged if dropped from heights in excess of 20 feet.

A WARNING

Battery hazards remain when cells are discharged.

5.3.2 Environmental considerations

As with any battery, local environmental rules and regulations should be consulted for proper management of spent batteries. If no specific requirements exist, recycling through a qualified recycler is encouraged. Consult the material's safety data sheet for battery specific information.

5.3.3 Shipping considerations

The unit was shipped to you without the power module installed. Remove the power module prior to shipping the unit.

6 Troubleshooting

6.1 Overview

This section provides summarized maintenance and troubleshooting suggestions for the most common operating problems. If you suspect malfunction despite the absence of any diagnostic messages on the Field Communicator display, follow the procedures described here to verify that transmitter hardware and process connections are in good working order. Always deal with the most likely checkpoints first.

6.2 Safety messages

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Refer to the following safety messages before performing an operation preceded by this symbol.

AWARNING

Failure to follow these installation guidelines could result in death or serious injury.

Ensure only qualified personnel perform the installation.

Explosions could result in death or serious injury.

Installation of this transmitter in an explosive environment must be in accordance with the appropriate local, national, and international standards, codes, and practices. Review the approvals section of this manual for any restrictions associated with a safe installation.

Before connecting a Field Communicator in an explosive atmosphere, ensure the instruments are installed in accordance with intrinsically safe or non-incendive field wiring practices.

Verify that the operating environment of the device is consistent with the appropriate hazardous locations certifications.

Process leaks may cause harm or result in death.

Do not remove the thermowell while in operation.

Install and tighten thermowells and sensors before applying pressure.

Electrical shock could cause death or serious injury.

Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

A WARNING

This device complies with Part 15 of the FCC Rules. Operation is subject to the following conditions:

This device may not cause harmful interference.

This device must accept any interference received, including interference that may cause undesired operation.

This device must be installed to ensure a minimum antenna separation distance of 8-in. (20 cm) from all persons.

The power module may be replaced in a hazardous area. The power module has surface resistivity greater than one gigaohm and must be properly installed in the wireless device enclosure. Care must be taken during transportation to and from the point of installation to prevent electrostatic charge build-up.

6.3 Device status information

6.3.1 Electronics failure

Description

An electronics error that could impact the device measurement reading has occurred.

Recommended actions

- 1. Reset the device.
- 2. Reconfirm all configuration items in the device.
- 3. If the condition persists, replace the electronics.

6.3.2 Radio failure

Description

The wireless radio has detected a failure or stopped communicating.

Recommended actions

- 1. Reset the device.
- 2. If the condition persists, replace the electronics.

6.3.3 Supply voltage failure

Description

The supply voltage is too low for the device to broadcast updates.

Recommended actions

Replace the power module.

6.3.4 Electronics warning

Description

The device has detected an electronics error that does not currently impact the device measurement reading.

Recommended actions

- 1. Reset the device.
- 2. Reconfirm all configuration items in the device.
- 3. If the condition persists, replace the electronics.

6.3.5 Electronics temperatures has exceeded limits

Description

The electronics temperature has exceeded the transmitter's maximum range.

Recommended actions

- 1. Verify environmental temperature is within the transmitter's range.
- 2. Remote mount the transmitter away from process and environmental conditions.
- 3. Reset the device.
- 4. If the condition persists, replace the electronics.

6.3.6 Supply voltage low

Description

The supply voltage is low and may soon affect broadcast updates.

Recommended actions

Replace the power module.

6.3.7 Database memory warning

Description

The device has failed to write to the database memory. Any data written during this time may have been lost.

Recommended actions

- 1. Reset the device.
- 2. Reconfirm all configuration items in the device.
- 3. If logging dynamic data not needed, this advisory can be safely ignored.
- 4. If the condition persists, replace the electronics.

6.3.8 Hi Hi alarm

Description

The primary variable has surpassed the user defined limit.

Recommended actions

- 1. Verify the process variable is within user specified limits.
- 2. Reconfirm the user defined alarm limit.
- 3. If not needed, disable this alert.

6.3.9 Hi alarm

Description

The primary variable has surpassed the user defined limit.

Recommended actions

- 1. Verify the process variable is within user specified limits.
- 2. Reconfirm the user defined alarm limit.
- 3. If not needed, disable this alert.

6.3.10 Lo alarm

Description

The primary variable has surpassed the user defined limit.

Recommended actions

- 1. Verify the process variable is within user specified limits.
- 2. Reconfirm the user defined alarm limit.
- 3. If not needed, disable this alert.

6.3.11 Lo Lo alarm

Description

The primary variable has surpassed the user defined limit

Recommended actions

- 1. Verify the process variable is within user specified limits.
- 2. Reconfirm the user defined alarm limit.
- 3. If not needed, disable this alert.

6.3.12 Simulation active

Description

The device is in simulation mode and may not be reporting actual information.

Recommended actions

- 1. Verify simulation is no longer required.
- 2. Disable Simulation mode in Service Tools.
- 3. Reset the device.

6.4 Transmitter output

6.4.1 High output temperature detected

Potential cause

Sensor input failure or connection

Recommended actions

- 1. Connect a Field Communicator and enter the transmitter test mode to isolate a sensor failure.
- 2. Check for a sensor open or short circuit.
- 3. Check the process variable to see if it is out of range.

Potential cause

Electronics module

Recommended actions

- 1. Connect a Field Communicator and enter the transmitter status mode to isolate module failure.
- 2. Connect a Field Communicator and check the sensor limits to ensure calibration adjustments are within the sensor range.

6.4.2 Digital temperature output is erratic

Potential cause

Wiring

Recommended actions

Check sensor wiring integrity at all junctions to ensure proper connections.

Potential cause

Electronics module

Recommended actions

Connect a Field Communicator and enter the transmitter test mode to isolate module failure.

6.4.3 Low output or no output

Potential cause

Sensor element

Recommended actions

- 1. Connect a Field Communicator and enter the transmitter test mode to isolate a sensor failure.
- 2. Check the process variable to see if it is out of range.

6.5 LCD display

6.5.1 LCD display not operating

Potential cause

Electronic module

Recommended actions

Ensure the LCD display in enabled.

Potential cause

Connector

Recommended actions

Ensure the LCD display pins are not bent.

Potential cause

LCD display

Recommended actions

Ensure the LCD display is properly seated with the tabs snapped in place and fully engaged.

6.6 Wireless network

6.6.1 Device not joining the network

Recommended actions

1. Verify network ID and join key.

- 2. Verify network is in active network advertise.
- 3. Wait longer (30 minutes).
- 4. Check power module.
- 5. Verify device is within range of at least one other device.
- 6. Power cycle device to try again.
- 7. Verify device is configured to join. Ensure the Join Mode is configured to "Join on Powerup or Reset".

6.6.2 Short battery life

Recommended actions

- 1. Check that "Power Always On" mode is off.
- 2. Verify device is not installed in extreme temperatures.
- 3. Verify device is not a network pinch point.
- 4. Check for excessive network rejoins due to poor connectivity.

6.6.3 Limited bandwidth error

Recommended actions

- 1. Reduce the update rate on transmitter.
- 2. Increase communication paths by adding more wireless points.
- 3. Check that device has been on line for at least an hour.
- 4. Check that device is not routing through a "limited" routing node.
- 5. Create a new network with an additional Wireless Gateway.

6.7 Service support

To expedite the return process outside of the United States, contact the nearest Emerson representative.

Within the United States, call the Emerson Instrument and Valves Response Center using the 1-800-654-RSMT (7768) toll-free number. This center is available 24 hours a day, will assist you with any needed information or materials.

The center will ask for the following information:

- Product model
- Serial numbers
- The last process material to which the product was exposed

The center will provide:

- A Return Material Authorization (RMA) number
- Instructions and procedures that are necessary to return goods that were exposed to hazardous substances.

ACAUTION

Individuals who handle products exposed to a hazardous substance can avoid injury if they are informed of and understand the hazard. If the product being returned was exposed to a hazardous substance as defined by OSHA, a copy of the required Safety Data Sheet (SDS) for each hazardous substance identified must be included with the returned goods.

Note

If the device has been exposed to a hazardous substance, a Safety Data Sheet (SDS) must be included with the returned materials. An SDS is required by law to be available to people exposed to specific hazardous substances.

A Reference data

A.1 Product Certifications

To view current Rosemount 248 Wireless Temperature Transmitter Product Certifications, follow these steps:

Procedure

- 1. Go to Emerson.com/Rosemount/Rosemount-248-Wireless.
- 2. Scroll as needed to the green menu bar and click **Documents & Drawings**.
- 3. Click Manuals & Guides.
- 4. Select the appropriate Quick Start Guide.

A.2 Ordering Information, Specifications, and Drawings

To view current Rosemount 248 Wireless Temperature Transmitter Ordering Information, Specifications, and Drawings, follow these steps:

Procedure

- 1. Go to Emerson.com/Rosemount/Rosemount-248-Wireless.
- 2. Scroll as needed to the green menu bar and click **Documents & Drawings**.
- 3. For installation drawings, click **Drawings & Schematics**.
- 4. Select the appropriate document.
- 5. For ordering information, specifications, and dimensional drawings, click **Data Sheets & Bulletins** and select the appropriate Product Data Sheet.

В

Alert Message Mapping

This appendix outlines the most important alerts in the HART[®] command 84 Additional Status Field for the transmitter. The information in this section can be used by DeltaV[™] for alert monitoring, and in the Emerson Wireless Gateway for Additional Status mapping in Modbus[®], OPC, etc.

A complete list of additional status bits is available in the Wireless Gateway.

Table B-1 to Table B-2 displays the device variable and variable mapping indexes for the transmitter.

Table B-3 to Table B-4 shows a list of the most important alert messages that may be displayed in the AMS Wireless Configurator and Field Communication together with the location of the Alert in the HART command 48 additional status field.

To view Active Alerts, from the *Home* screen, go to Service Tools \rightarrow Active Alerts.

Table B-1: Device Variable Index

Device variable	Index	
0	Supply voltage	
1	Electronics temperature	
2	Totalized volume	
3	Average flow rate	

Table B-2: Default Variable Mapping Index (can be modified)

Variables	Index	
PV	Totalized volume	
SV	Average flow rate	
TV	Electronics temperature	
QV	Supply voltage	

Table B-3: Failure Alerts (F:)

Message	Additional status ⁽¹⁾	Description
Electronics Failure	Byte 8 :: Bit 6	A failure has been detected in the device memory and/or electronics
Configuration Error	Byte 2 :: Bit 6	The device has detected a configuration error based on a change to the device
Radio Failure	Byte 1 :: Bit 6	The wireless radio has detected a failure or stopped communicating
Supply Voltage Failure	Byte 6 :: Bit 2	The supply voltage is too low for the device to broadcast

(1) Location of the Alert in the HART command 48 Status field.

Table B-4: Maintenance Alerts (M:)

Message	Additional status ⁽¹⁾	Description
Totalized Volume Rollover	Byte 3 :: Bit 2	The totalized volume has exceeded the maximum value and automatically reset to zero
Average Flow Rate Saturated	Byte 3 :: Bit 0	The average flow rate is beyond the operating limits of the device and the reported value is saturated
Electronics Temperature Beyond Limits	Byte 8 :: Bit 5	The terminal temperature has exceeded the transmitter's maximum range
Supply Voltage Low	Byte 8 :: Bit 4	The supply voltage is low and may soon affect broadcast updates

(1) Location of the Alert in the HART command 48 Status field.

Emerson Automation Solutions

Latin America Regional Office

Emerson Automation Solutions 1300 Concord Terrace, Suite 400 Sunrise, FL 33323, USA + 1 954 846 5030 + 1 954 846 5121 RFQ.RMD-RCC@Emerson.com

Asia Pacific Regional Office

Emerson Automation Solutions 1 Pandan Crescent Singapore 128461 1 +65 6777 8211 2 +65 6777 0947 C Enquiries@AP.Emerson.com

North America Regional Office

Emerson Automation Solutions 8200 Market Blvd. Chanhassen, MN 55317, USA 1 +1 800 999 9307 or +1 952 906 8888 +1 952 949 7001 C RMT-NA.RCCRFQ@Emerson.com

Europe Regional Office

Emerson Automation Solutions Europe GmbH Neuhofstrasse 19a P.O. Box 1046 CH 6340 Baar Switzerland III +41 (0) 41 768 6111 +41 (0) 41 768 6300 RFQ.RMD-RCC@Emerson.com

Middle East and Africa Regional Office

Emerson Automation Solutions Emerson FZE P.O. Box 17033 Jebel Ali Free Zone - South 2 Dubai, United Arab Emirates +971 4 8118100 +971 4 8865465 RFQ.RMTMEA@Emerson.com

in Linkedin.com/company/Emerson-Automation-Solutions

E Twitter.com/Rosemount_News

Facebook.com/Rosemount

Youtube.com/user/RosemountMeasurement

©2020 Emerson. All rights reserved.

Emerson Terms and Conditions of Sale are available upon request. The Emerson logo is a trademark and service mark of Emerson Electric Co. Rosemount is a mark of one of the Emerson family of companies. All other marks are the property of their respective owners.

ROSEMOUNT