
Technical information iTEMP HART® DIN rail TMT112

Universal temperature transmitter for resistance thermometers (RTD), thermocouples, resistance and voltage transmitters, incorporating HART® protocol

Products

Application areas

- Temperature transmitter with HART® protocol for converting various input signals into a scalable 4 to 20 mA analog output signal
- Input:
 Resistance thermometer (RTD)
 Thermocouple (TC)
 Resistance transmitter (Ω)
 Voltage transmitter (mV)
- HART[®] protocol for front end unit or panel unit operation using the hand operating module (DXR375) or PC (e.g. ReadWin[®] 2000 or FieldCare)
- Installation on DIN rail according to IEC 60715

Features and benefits

- Universal settings with HART® protocol for various input signals
- 2-wire technology, 4 to 20 mA analog output
- High accuracy in total ambient temperature range

- Fault signal on sensor break or short circuit, presettable to NAMUR NE 43
- EMC to NAMUR NE 21, CE
- UL recognized component
- CSA General Purpose
- Ex-Certification:
 - ATEX Ex ia - CSA IS
 - FM IS
- Galvanic isolation
- Output simulation
- Min./max. process value indicator function
- ullet Customer-specific linearisation
- Linearization curve match

Minimum

measurement range

Function and system design

Measuring principle

Electronic measurement and conversion of input signals in industrial temperature measurement.

Measuring system

The iTEMP HART® DIN rail TMT112 temperature transmitter is a 2-wire transmitter with an analog output. It has measurement input for resistance thermometers (RTD) in 2-, 3- or 4-wire connection, thermocouples and voltage transmitters. Setting up of the TMT112 is done using the HART® protocol with hand operating module (DXR375) or PC (e.g. configuration software ReadWin® 2000 or Field-Care).

Input

Type

Measured variable

Temperature (temperature linear), resistance and voltage.

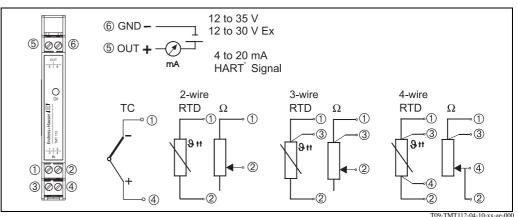
Measuring range

Depending upon the sensor connection and input signal. The transmitter evaluates a number of different measurement ranges.

Measurement ranges

Type of input

		3	measurement range
	Pt100 Pt500 Pt1000 acc. to IEC 751 (a = 0.00835) Pt100 acc. to IIS C 1604-81 (a = 0.003916)	-200 to 850 °C (-328 to 1562 °F) -200 to 250 °C (-328 to 482 °F) -200 to 250 °C (-328 to 482 °F) -200 bis 649 °C (-328 bis 1200 °F)	10 K (18 °F) 10 K (18 °F) 10 K (18 °F) 10 K (18 °F)
Resistance thermometer (RTD)	Ni100		10 K (18 °F) 10 K (18 °F) 10 K (18 °F)
	 Connection type: 2-, 3- or 4-wire conr Software compensation of cable resist Sensor cable resistance max. 40 Ω per Sensor current: ≤ 0.2 mA 	ance possible in the 2-wire system (0 to 30 Ω)	
Resistance transmitter	Resistance Ω	10 to 400 Ω 10 to 2000 Ω	10 Ω 100 Ω
Thermocouples (TC)	B (PtRh30-PtRh6) C (W5Re-W26Re) ¹⁾ D (W3Re-W25Re) ¹ E (NiCr-CuNi) J (Fe-CuNi) K (NiCr-Ni) L (Fe-CuNi) ²⁾ N (NiCrSi-NiSi) R (PtRh13-Pt) S (PtRh10-Pt) T (Cu-CuNi) U (Cu-CuNi) ² acc. to IEC 584 Part1	40 to +1820 °C (104 to 3308 °F) 0 to +2320 °C (32 to 4208 °F) 0 to +2495 °C (32 to 4523 °F) -270 to +1000 °C (-454 to 1832 °F) -210 to +1200 °C (-346 to 2192 °F) -270 to +1372 °C (-454 to 2501 °F) -200 to +900 °C (-328 to 1652 °F) -270 to +1300 °C (-454 to 2372 °F) -50 to +1768 °C (-58 to 3214 °F) -50 to +1768 °C (-58 to 3214 °F) -270 to +400 °C (-454 to 752 °F) -200 to +600 °C (-328 to 1112 °F)	500 K (900 °F) 500 K (900 °F) 500 K (900 °F) 50 K (90 °F) 50 K (90 °F) 50 K (90 °F) 50 K (90 °F) 50 K (900 °F) 500 K (900 °F) 500 K (900 °F) 50 K (900 °F) 50 K (900 °F)
	 Cold junction internal (Pt100) Cold junction accuracy: ± 1 K 		
	3		


- 1) According to ASTM E988
- 2) According to DIN 43710

Output

Output signal	Analog 4 to 20 mA, 20 to 4 mA
Signal on alarm	 Measurement range undercut: Linear drop to 3.8 mA Exceeding measurement range: Linear rise to 20.5 mA Sensor breakage; Sensor short circuit (not for thermocouples TC): ≤ 3.6 mA or ≥ 21.0 mA (for configuration ≥ 21.0 mA, output is ≥ 21.5 mA)
Load	Max. (V _{Power supply} - 12 V) / 0.022 A (Current output)
Linearization / transmission behaviour	Temperature linear, resistance linear, voltage linear
Filter	Digital filter 1. degree: 0 to 100 s
Galvanic isolation	U = 2 kV AC (Input/output)
min. current consumption	≤ 3.5 mA
Current limit	≤ 23 mA
Switch on delay	4 s (during power up $I_a \approx 3.8 \text{ mA}$)

Power supply

Electrical connection

10, 1111

Temperature transmitter terminal connections

For the unit operation via $HART^{\circ}$ protocol (terminals 5 and 6) a minimum load resistance of 250 Ω is necessary in the signal circuit!

Supply voltage	U_b = 12 to 35 V, polarity protected
Residual ripple	Allowable ripple $U_{ss} \le 3 \text{ V}$ at $U_h \ge 15 \text{ V}$, $f_{max} = 1 \text{ kHz}$

Performance characteristics

Response time

1 s

Reference operating conditions

Calibration temperature: +25 °C \pm 5 K (77 °F \pm 9 °F)

Maximum measured error

The accuracy data are typical values and correspond to a standard deviation of \pm 3 σ (normal distribution), i.e. 99.8% of all the measured values achieve the given values or better values.

	Туре	Measurement accuracy ¹
Resistance thermometer RTD	Pt100, Ni100 Pt500, Ni500 Pt1000, Ni1000	0.2 K or 0.08% 0.5 K or 0.20% 0.3 K or 0.12%
Thermocouple TC	K, J, T, E, L, U N, C, D R, S B	typ. 0.5 K or 0.08% typ. 1.0 K or 0.08% typ. 1.4 K or 0.08% typ. 2.0 K or 0.08%

	Measurement range	Measurement accuracy ¹⁾
Resistance transmitter (Ω)	10 to 400 Ω 10 to 2000 Ω	± 0.1 Ω or 0.08% ± 1.5 Ω or 0.12%
Voltage transmitter (mV)	-10 to 75 mV	± 20 mV or 0.08%

1) % is related to the adjusted measurement range. The value to be applied is the greater.

Physical input range of the sensors		
10 to 400 Ω	Polynom RTD, Pt100, Ni100	
10 to $2000~\Omega$	Pt500, Pt1000, Ni1000	
-10 to 75 mV	Thermocouple type: C, D, E, J, K, L, N, U	
-10 to 35 mV	Thermocouple type: B, R, S, T	

Influence of power supply

Sensor input: < 0,003%/V from measurement

Current output: < 0,007%/V of the adjusted measuring span

Influence of ambient temperature (temperature drift)

Total temperature drift = input temperature drift + output temperature drift

Effect on the accuracy when ambient temperature changes by 1 K (1.8 $^{\circ}$ F):		
Input 10 to 400Ω	typ. 0.0015% of measured value, min. 4 m Ω	
Input 10 to 2000 Ω	typ. 0.0015% of measured value, min. 20 m Ω	
Input -10 to 75 mV	typ. 0.005% of measured value, min. 1.2 μV	
Input -10 to 35 mV	typ. 0.005% of measured value, min. 0.6 μV	
Output 4 to 20 mA	typ. 0.005% of span	

Typical sensitivity of resistance thermometers:	
Pt: 0.00385 * R _{nominal} /K	Ni: 0.00617 * R _{nominal} /K

Example Pt100: 0.00385 x 100 Ω/K = 0.385 Ω/K

Typical sensitivity of thermocouples:

B: 10 μV/K	C: 20 µV/K	D: 20 μV/K	E: 75 μV/K	J: 55 μV/K	K: 40 μV/K
L: 55 µV/K	N: 35 µV/K	R: 12 μV/K	S: 12 μV/K	T: 50 μV/K	U: 60 μV/K

Example for calculating measured error for ambient temperature drift:

Input temperature drift ΔT = 10 K (18 °F), Pt100, measuring range 0 to 100 °C (32 to 212 °F)

Maximum process temperature: 100 °C (212 °F)

Measured resistance value: 138.5 Ω (IEC 60751) at maximum process temperature

Typical temperature drift in Ω : (0.0015% of 138.5 Ω) * 10 = 0.02078 Ω

Pt100 IEC 60751 Cl. B (internal reference junction for thermocouples TC)

Conversion to Kelvin: $0.02078 \Omega / 0.385 \Omega / K = 0.05 K (0.09 °F)$

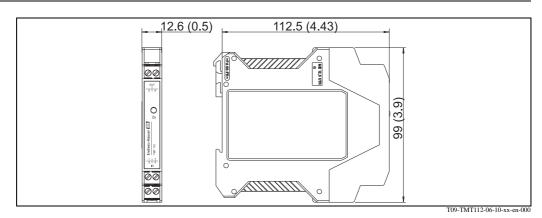
Influence of load $\leq \pm \ 0.02\%/100 \ \Omega$ Values refer to the full scale value $\leq 0.1 \text{K/year or} \leq 0.05\%/\text{year}$ Values under reference operating conditions. % refer to the set span. The highest value is valid.

Installation conditions

Installation instructions

Influence of cold junction

Orientation


No limit

Environment conditions

Ambient temperature limits	-40 to +85 $^{\circ}$ C (-40 to 185 $^{\circ}$ F), for Ex-areas see Ex-certification
Storage temperature	-40 to +100 °C (-40 to 212 °F)
Climate class	According to IEC 60654-1, Class C
Condensation	Permitted
Degree of protection	IP 20 (NEMA 1)
Shock and vibration resistance	4g / 2 to 150 Hz as per IEC 60 068-2-6
Electromagnetic compatibility (EMC)	CE conformity EMC to all relevant requirements of the IEC/EN 61326-series and NAMUR Recommendation EMC (NE21). For details, refer to the Declaration of Conformity. Maximum fluctuations during EMC-tests: < 1% of measuring span. Interference immunity to IEC/EN 61326-series, requirements for industrial areas Interference emission to IEC/EN 61326-series, electrical equipment Class B

Mechanical construction

Design, dimensions

Housing for DIN rail mounting according to IEC 60715; Dimensions in mm (in)

Weight Approx. 90 g (3.2 oz)

Material Housing: Plastic PC/ABS, UL 94V0

Terminals Keyed plug-in screw terminals, core size max. 2.5 mm² (16 AWG) solid, or strands with ferrules

Human interface

Display elements	A yellow illuminated LED signalizes: Device is operational. With the PC software ReadWin® 2000 or FieldCare the current measured value can be displayed.
Operating elements	At the temperature transmitter no operating elements are available directly. The temperature transmitter will be configured by remote operation with the PC software ReadWin® 2000 or FieldCare.

Remote operation

Configuration

Hand operating module DXR375 or PC with Commubox FXA191/FXA195 and operating software (ReadWin® 2000 or FieldCare).

Interface

PC interface Commubox FXA191 (RS232) or FXA195 (USB).

Configurable parameters

Sensor type and connection type, engineering units (°C/°F), measurement range, internal/external cold junction compensation, cable resistance compensation on 2-wire connection, fault conditioning, output signal (4 to 20/20 to 4 mA), digital filter (damping), offset, measurement point identification + descriptor (8 + 16 characters), output simulation, customer specific linearisation, min./max. process value indicator function.

Certificates and approvals

	**
CE-Mark	The device meets the legal requirements of the EC directives. Endress+Hauser confirms that the device has been successfully tested by applying the CE mark.
Hazardous area approvals	For further details on the available Ex versions (ATEX, CSA, FM, etc.), please contact your nearest Endress+Hauser sales organisation. All relevant data for hazardous areas can be found in separate Ex documentation. If required, please request copies from us or your Endress+Hauser sales organisation.
UL approval	UL recognized component (see www.ul.com/database, search for keyword "E225237")

Other standards and guidelines

- IEC 60529: Degree of protection by housing (IP code)
- IEC 61010: Safety requirements for electrical measurement, control and laboratory use.
- IEC 61326: Electromagnetic compatibility (EMC requirements)
- NAMUR Standards working group for measurement and control technology in the chemical industry. (www.namur.de).

CSA GP

CSA General Purpose

Ordering information

Detailed ordering information is available from the following sources:

- In the Product Configurator on the Endress+Hauser website: www.endress.com -> Click "Corporate"
 -> Select your country -> Click "Products" -> Select the product using the filters and search field -> Open product page -> The "Configure" button to the right of the product image opens the Product Configurator.
- From your Endress+Hauser Sales Center: www.addresses.endress.com

Product Configurator - the tool for individual product configuration

- Up-to-the configuration
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress-Hauser Online Shop

Accessories

- Commubox FXA191 (RS232) or FXA195 (USB)Order code: FXA191-... or FXA195-...
- PC-operating software: ReadWin® 2000 or FieldCare ReadWin® 2000 can be downloaded free of charge from the internet from the following address: www.endress.com/readwin
- Hand operating module 'HART® Communicator DXR375'
 Order code: DXR375-...

Documentation

- Brief operating instructions iTEMP HART® DIN rail TMT112 (KA193R/09/a3)
- Additional documentation for use in explosion-hazardous areas:
 ATEX II 2(1) G Ex ia IIC (XA022R/09/a3)
 ATEX II3G Ex nA II (XA055R/09/a3)

www.addresse	s.endress.com

